仿站低至300元,新闻自媒体

OpenAI机械手“自学”完成单手解魔方

编辑/2019-10-18/ 分类:百科知识/阅读:
近日,人工智能研究组织OpenAI在构建通用自学 机器人 方面取得了新的里程碑。该组织的机器人部门表示,其去年首次开发的 类人机器人 手Dactyl,已经学会了单手解魔方。 OpenAI将这一壮举视为机器人附件灵巧性以及自家AI软件的巨大飞跃,AI软件使Dactyl可以在 ...

近日,人工智能研究组织OpenAI在构建通用自学机器人方面取得了新的里程碑。该组织的机器人部门表示,其去年首次开发的类人机器人手Dactyl,已经学会了单手解魔方。 OpenAI将这一壮举视为机器人附件灵巧性以及自家AI软件的巨大飞跃,AI软件使Dactyl可以在面临实际挑战之前,利用虚拟仿真学习虚拟任务中的新任务。

据报道,OpenAI是一家以人工智能和机器学习研究而闻名的公司,其周二展示了能解开三阶魔方的机械手。这套名为Dactyl的机械手是通过使用称为自动域随机化(ADR)和强化学习的新技术进行训练的。在过去的Dota 2中,Dactyl所采用的强化学习算法已经证明了它可以对抗人类对手。

OpenAI机械手“学习”解开三阶魔方技术

名为Dactyl的机械手是通过使用称为自动域随机化(ADR)和强化学习的新技术进行训练的。在过去的Dota 2中,Dactyl所采用的强化学习算法已经证明了它可以对抗人类对手。

新技术ADR通过生成越来越难以训练的Dactyl训练场景来帮助教机械手解决古老的难题。自动域随机化的方式如下:

ADR从单一的非随机环境开始,在该环境中,神经网络学习了如何解开三阶魔方。随着神经网络在任务中变得更好并达到性能阈值,域随机化的数量会自动增加。

由于神经网络现在必须学会将其推广到更随机的环境,因此这使任务更加艰巨。神经网络不断学习,直到再次超过性能阈值,然后再进行更多随机化,然后重复该过程。

团队认为,ADR是一项重大进步,因为逐步困难的训练模拟的建立“使我们摆脱了对真实世界的准确模型的束缚,并使在模拟中学习到的神经网络的转移能够应用于真实世界。 ”

有些人并不完全相信增强学习是否是未来此类机器人的方法。Berenson在谈到该主题时暗示了一种更传统的方法:“到今天结束时,将会有一些学习过程-可能是强化学习。但是我认为那些过程实际上应该晚得多。”

TAG:
阅读:
广告 330*360

推荐文章

Recommend article
广告 330*360

热门文章

HOT NEWS
  • 周榜
  • 月榜
广告 330*360
仿站低至300元,新闻自媒体
韩德科技资讯媒体
微信二维码扫一扫
关注微信公众号
新闻自媒体联系QQ:327004128 邮箱:327004128@qq.com Copyright © 2015-2019 韩德科技资讯媒体 版权所有
二维码
意见反馈 二维码